78 research outputs found

    suppression of dc link voltage unbalance in three level neutral point clamped converters

    Get PDF
    Abstract Two different control approaches for suppressing DC-link voltage unbalance in Three-Level Neutral-Point Clamped Converters (NPCs) are presented in this paper. They both guarantee DC-link voltage equalization over any NPC operating conditions, i.e. when the NPC feeds or is supplied by the main AC grid at different active and/or reactive power rates. The proposed control approaches consist of either a hysteresis or a proportional regulator, each of which synthesizes the most suitable control action based on the actual DC-link voltage unbalance. Particularly, two different PWM techniques have been developed in order to achieve DC-link voltage equalization successfully, preserving NPC voltage and current waveforms at the same time. The performances achievable by means of both the proposed control approaches have been compared to each other through an extensive simulation study in order to highlight their most important advantages and drawbacks, as well as their effectiveness over any operating conditions. Particularly, both control approaches are validated in the Matlab-Simulink environment referring to DC-link voltage equalization of an NPC that represents the point of common coupling between a DC microgrid and the main AC grid

    Inductor losses estimation in DC-DC converters by means of averaging technique

    Get PDF
    A suitable inductor modeling for power electronic DC-DC converters is presented in this paper. It is developed with the aim of improving inductor losses estimation achievable by averaged models, which inherently neglect inductor current ripple. In order to account for its contribution to the overall inductor losses, an appropriate parallel resistance is thus enclosed into the inductor model, whose value should be chosen in accordance with the DC-DC converter operating conditions. This allows the development of improved averaged models of DC-DC converters, especially in terms of power losses estimation. The effectiveness of the proposed modeling approach has been validated through a simulation study, which refers to the case of a boost DC-DC converter and is performed by means of a suitable circuit simulator designed for rapid modelling of switching power systems (SIMetrix/SIMPLIS)

    Vehicle-to-Grid Technology: State-of-the-Art and Future Scenarios

    Get PDF
    An overview of V2G (vehicle-to-grid) technology is presented in this paper. It aims to highlight the main features, opportunities and requirements of V2G. Thus, after briefly resuming the most popular charging strategies for PEVs (plug-in electric vehicles), the V2G concept is introduced, especially highlighting its potentiality as a revenue opportunity for PEV owners; this is mainly due to the V2G ability to provide ancillary services, such as load leveling, regulation and reserve. Such solutions have been thoroughly investigated in the literature from both the economic and technical points of view and are here reported. In addition, V2G requirements such as mobility needs, charging stations availability and appropriate PEV aggregative architectures are properly taken into account. Finally, future developments and scenarios have also been reported

    Design of a High-Speed Ferrite-based Brushless DC Machine for Electric Vehicles

    Get PDF
    In the present paper an analytic procedure for the preliminary design of a High-Speed ferrite-based Brushless DC Machine (HS-BLDC) has been proposed. In particular, mechanical and electromagnetic modeling have been developed in order to take into account their mutual influence in the definition of the geometry of the electrical machine. In addition, suitable design targets have been imposed in accordance with electric vehicle application requirements. Hence, several mechanical and electromagnetic constraints have been introduced in order to comply with high-speed operation, preventing demagnetization issues of ferrite magnets as well. Subsequently, an HS-BLDC characterized by an inner rotor configuration has been designed in accordance with the proposed methodology. The analytical procedure and the corresponding results have been reported and validated by means of Finite Element Analyses (FEAs), highlighting the effectiveness of the proposed configuration and design solutions

    Nanotechnology for Natural Medicine: Formulation of Neem Oil Loaded Phospholipid Vesicles Modified with Argan Oil as a Strategy to Protect the Skin from Oxidative Stress and Promote Wound Healing

    Get PDF
    Neem oil, a plant-derived product rich in bioactives, has been incorporated in liposomes and hyalurosomes modified by adding argan oil and so called argan-liposomes and argan-hyalurosomes. Argan oil has also been added to the vesicles because of its regenerative and protective effects on skin. In the light of this, vesicles were specifically tailored to protect the skin from oxidative stress and treat lesions. Argan-liposomes were the smallest vesicles (~113 nm); the addition of sodium hyaluronate led to an increase in vesicle size (~143 nm) but it significantly improved vesicle stability during storage. In vitro studies confirmed the free radical scavenging activity of formulations, irrespective of their composition. Moreover, rheological investigation confirmed the higher viscosity of argan-hyalurosomes, which avoid formulation leakage after application. In vitro studies performed by using the most representative cells of the skin (i.e., keratinocytes and fibroblasts) underlined the ability of vesicles, especially argan-liposomes and argan-hyalurosomes, to counteract oxidative stress induced in these cells by using hydrogen peroxide and to improve the proliferation and migration of cells ensuring the more rapid and even complete closure of the wound (scratch assay). View Full-Text Keywords: liposomes; hyalurosomes; keratinocytes; fibroblasts; skin diseases; viscosity; oxidative stres

    Sardinia Array Demonstrator: Instrument Overview and Status

    Get PDF
    In the framework of the Square Kilometer Array (SKA) project, the Italian Institute for Astrophysics (INAF) has addressed several efforts in the design and prototyping of aperture arrays for low-frequency radio astronomical research. The Sardinia Array Demonstrator (SAD) is a national project aimed to develop know-how in this area and to test different architectural technologies and calibration algorithms. SAD consists of 128 prototypical dual-polarized Vivaldi antennas designed to operate at radio frequencies below 650 MHz. The antennas will be deployed at the Sardinia Radio Telescope’s site with a versatile approach able to provide two different array configurations: (i) all antennas grouped in one large station or (ii) spread among a core plus few satellite stations. This paper provides an overview of the SAD project from an instrumental point of view, and illustrates its status after 2 years from its start

    The high-frequency upgrade of the Sardinia Radio Telescope

    Get PDF
    We present the status of the Sardinia Radio Telescope (SRT) and its forthcoming update planned in the next few years. The post-process scenario of the upgraded infrastructure will allow the national and international scientific community to use the SRT for the study of the Universe at high radio frequencies (up to 116 GHz), both in single dish and in interferometric mode. A telescope like SRT, operating at high frequencies, represents a unique resource for the scientific community. The telescope will be ideal for mapping quickly and with relatively high angular resolution extended radio emissions characterized by low surface brightness. It will also be essential for spectroscopic and polarimetric studies of both Galactic and extragalactic radio sources. With the use of the interferometric technique, SRT and the other Italian antennas (Medicina and Noto) will operate within the national and international radiotelescope network, allowing astronomers to obtain images of radio sources at very high angular resolution

    Status of the High-Frequency Upgrade of the Sardinia Radio Telescope

    Get PDF
    The Sardinia Radio Telescope is going through a major upgrade aimed at observing the universe at up to 116 GHz. A budget of 18.700.000 E has been awarded to the Italian National Institute of Astrophysics to acquire new state-of-the-art receivers, back-end, and high-performance computing, to develop a sophisticated metrology system and to upgrade the infrastructure and laboratories. This contribution draws the status of the whole project at eight months from the end of the funding scheme planned for August 2022
    • …
    corecore